The problems of $5^{\text {th }}$ IGO along with their solutions
Intermediate Level

Problems:

1. There are three rectangles in the following figure. The lengths of some segments are shown. Find the length of the segment $X Y$.

2. In convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ meet at the point P. We know that $\angle D A C=90^{\circ}$ and $2 \angle A D B=\angle A C B$. If we have $\angle D B C+2 \angle A D C=180^{\circ}$ prove that $2 A P=B P$.
3. Let ω_{1}, ω_{2} be two circles with centers O_{1} and O_{2}, respectively. These two circles intersect each other at points A and B. Line $O_{1} B$ intersects ω_{2} for the second time at point C, and line $O_{2} A$ intersects ω_{1} for the second time at point D. Let X be the second intersection of $A C$ and ω_{1}. Also Y is the second intersection point of $B D$ and ω_{2}. Prove that $C X=D Y$.
4. We have a polyhedron all faces of which are triangle. Let P be an arbitrary point on one of the edges of this polyhedron such that P is not the midpoint or endpoint of this edge. Assume that $P_{0}=P$. In each step, connect P_{i} to the centroid of one of the faces containing it. This line meets the perimeter of this face again at point P_{i+1}. Continue this process with P_{i+1} and the other face containing P_{i+1}. Prove that by continuing this process, we cannot pass through all the faces. (The centroid of a triangle is the point of intersection of its medians.)
5. Suppose that $A B C D$ is a parallelogram such that $\angle D A C=90^{\circ}$. Let H be the foot of perpendicular from A to $D C$, also let P be a point along the line $A C$ such that the line $P D$ is tangent to the circumcircle of the triangle $A B D$. Prove that $\angle P B A=\angle D B H$.

Solutions:

1. There are three rectangles in the following figure. The lengths of some segments are shown. Find the length of the segment $X Y$.

Proposed by Hirad Aalipanah

Let us continue the rectangular sides to get the $A B C$ triangle. Because $A B=B C$ we can say that $\angle B C A=\angle B A C=45^{\circ}$. Therefore, we can determine some of the segments using the Pythagoras's theorem such as $A D=2 \sqrt{2}, D X=\sqrt{2}, C E=2 \sqrt{2}$ and $E Y=\frac{\sqrt{2}}{2}$. So, we have

$$
X Y=A C-A D-D X-C E-E Y=10 \sqrt{2}-2 \sqrt{2}-\sqrt{2}-2 \sqrt{2}-\frac{\sqrt{2}}{2}=\frac{9 \sqrt{2}}{2}
$$

2. In convex quadrilateral $A B C D$, the diagonals $A C$ and $B D$ meet at the point P. We know that $\angle D A C=90^{\circ}$ and $2 \angle A D B=\angle A C B$. If we have $\angle D B C+2 \angle A D C=180^{\circ}$ prove that $2 A P=B P$.

Proposed by Iman Maghsoudi

Solution.

Let M be the intersection point of the angle bisector of $\angle P C B$ with segment $P B$. Since $\angle P C M=\angle P D A=\theta$ and $\angle A P D=\angle M P C$, we get that $\triangle P M C \sim \triangle P A D$, which means $\angle P M C=90^{\circ}$.
Now in triangle $C P B$, the angle bisector of vertex C is the same as the altitude from C, this means $C P B$ is an isosceles triangle and so $P M=M B, P C=C B$.
In triangle $D B C$, we have

$$
\widehat{D B C}+2 \theta+\widehat{P C D}+\widehat{P D C}=180^{\circ} .
$$

This along with the assumption that $\angle D B C+2 \angle A D C=180^{\circ}$, implies $\angle P C D=\angle P D C$. Therefore $P C=P D$ and so $\triangle P M C \cong \triangle P A D$, hence $A P=P M=\frac{P B}{2}$.
3. Let ω_{1}, ω_{2} be two circles with centers O_{1} and O_{2}, respectively. These two circles intersect each other at points A and B. Line $O_{1} B$ intersects ω_{2} for the second time at point C, and line $O_{2} A$ intersects ω_{1} for the second time at point D. Let X be the second intersection of $A C$ and ω_{1}. Also Y is the second intersection point of $B D$ and ω_{2}. Prove that $C X=D Y$.

Solution. First, we use a well-known lemma.
Lemma. Let $P Q R S$ be a convex quadrilateral with $R Q=R S, \angle R P Q=\angle R P S$ and $P Q \neq P S$. Then PQRS is cyclic.
Proof. Assume the contrary, and let $P^{\prime} \neq P$ be the intersection point of the circle passing through R, S, Q with line $P R$.
Since $P^{\prime} Q R S$ is cyclic and $R Q=R S$, we get $\angle S P^{\prime} R=\angle Q P^{\prime} R$. Now let's considerate on triangles $S P^{\prime} P$ and $Q P^{\prime} P$. In these two triangles we have $\angle S P^{\prime} P=\angle Q P^{\prime} P$ and also $\angle P^{\prime} P Q=$ $\angle P^{\prime} P S$. This means these two triangles are equal, hence $P Q=P S$, which is a contradiction. So the lemma is proved.
Back to the problem.

Triangles $A D Y$ and $B X C$ are similar, because

$$
\widehat{A D Y}=\widehat{B X C}=180^{\circ}-\widehat{B X A},
$$

and

$$
\widehat{D Y A}=\widehat{B C X}=180^{\circ}-\widehat{A Y B} .
$$

Note that O_{2} lies on the angle bisector of $\angle A O_{1} B, O_{2} A=O_{2} C$ and also $O_{1} A \neq O_{1} C$. So we can use the lemma and conclude that $O_{1} A O_{2} C$ is cyclic. Similarly, we get that $O_{2} B O_{1} D$ is cyclic.

$$
\widehat{A Y D}=180^{\circ}-\widehat{A Y B}=\widehat{O_{1} C A}=\widehat{O_{1} O_{2} A}=\widehat{O_{1} B D} .
$$

Which means $A C \| B D$ and so $A Y=B C$. But since $\triangle A D Y \sim \triangle B X C$, we get that these two triangle are equal and so $C X=D Y$.
4. We have a polyhedron all faces of which are triangle. Let P be an arbitrary point on one of the edges of this polyhedron such that P is not the midpoint or endpoint of this edge. Assume that $P_{0}=P$. In each step, connect P_{i} to the centroid of one of the faces containing it. This line meets the perimeter of this face again at point P_{i+1}. Continue this process with P_{i+1} and the other face containing P_{i+1}. Prove that by continuing this process, we cannot pass through all the faces. (The centroid of a triangle is the point of intersection of its medians.)

Proposed by Mahdi Etesamifard - Morteza Saghafian
Solution. Suppose that $A B$ is the edge that P lies on. Let M be the midpoint of $A B$ and without loss of generality, assume that P lies between B and M. We will prove that it is impossible to pass through a face which doesn't contain A. (Such face exists in any polyhedron)
Let $B=B_{0}, B_{1}, B_{2}, \ldots$ be the vertices adjacent to A in this order. Let M_{i} be the midpoint of $A B_{i}$. By using induction, we prove that for each i, P_{i} lies on edge $A B_{i}$, between B_{i} and M_{i}. For $i=0$ the claim is true. Now assume the claim for i and consider the triangle $A B_{i} B_{i+1}$ with centroid G_{i}.

Since P_{i} lies between M_{i} and B_{i}, we get that $P_{i} G_{i}$ lies between $M_{i} G_{i}$ and $B_{i} G_{i}$, which are the medians of this triangle. So P_{i+1} lies on $A B_{i+1}$, between M_{i+1} and B_{i+1}. So the claim is proved. We proved that P_{i} 's lie on $A B_{i}$'s, so the sequence of points P_{i} goes around A and therefore does not pass through a face which doesn't contain A.
5. Suppose that $A B C D$ is a parallelogram such that $\angle D A C=90^{\circ}$. Let H be the foot of perpendicular from A to $D C$, also let P be a point along the line $A C$ such that the line $P D$ is tangent to the circumcircle of the triangle $A B D$. Prove that $\angle P B A=\angle D B H$.

Proposed by Iman Maghsoudi

Suppose that $A B, A D$ meet the circumcircle of triangle $P D B$ for the second time at points X, Y respectively. Let $\angle C D B=\alpha$ and $\angle A D B=\theta$. Therefore, we have $\angle A B D=\alpha$, and so $\angle A D P=\alpha$.
Also $\angle P D B=\angle P X B=\alpha+\theta$, and $\angle P A X=\angle A C D=\angle D A H$. Which implies

$$
\begin{aligned}
A \stackrel{\Delta}{P} X & \sim A \stackrel{\Delta}{D} H \Longrightarrow \frac{A P}{A H}=\frac{A X}{A D} \\
X \stackrel{\Delta}{A} D & \sim Y \Delta \Delta B \Longrightarrow \frac{A Y}{A B}=\frac{A X}{A D} \\
& \Longrightarrow \frac{A P}{A H}=\frac{A Y}{A B}
\end{aligned}
$$

Now since $\angle H A B=\angle P A Y=90^{\circ}$, It can be written that $A \stackrel{\triangle}{P} Y \sim A \stackrel{\triangle}{H} B$.

$$
\Longrightarrow \widehat{H B A}=\widehat{P Y A}=\widehat{P B D} \Longrightarrow \widehat{P B A}=\widehat{D B H} .
$$

