# The problems of $5^{\text {th }}$ IGO along with their solutions <br> Elementary Level 

## Problems:

1 As shown below, there is a $40 \times 30$ paper with a filled $10 \times 5$ rectangle inside of it. We want to cut out the filled rectangle from the paper using four straight cuts. Each straight cut is a straight line that divides the paper into two pieces, and we keep the piece containing the filled rectangle. The goal is to minimize the total length of the straight cuts. How to achieve this goal, and what is that minimized length? Show the correct cuts and write the final answer. There is no need to prove the answer.


2 Convex hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ lies in the interior of convex hexagon $B_{1} B_{2} B_{3} B_{4} B_{5} B_{6}$ such that $A_{1} A_{2}\left\|B_{1} B_{2}, A_{2} A_{3}\right\| B_{2} B_{3}, \ldots, A_{6} A_{1} \| B_{6} B_{1}$. Prove that the areas of simple hexagons $A_{1} B_{2} A_{3} B_{4} A_{5} B_{6}$ and $B_{1} A_{2} B_{3} A_{4} B_{5} A_{6}$ are equal. (A simple hexagon is a hexagon which does not intersect itself.)

3 In the given figure, $A B C D$ is a parallelogram. We know that $\angle D=60^{\circ}, A D=2$ and $A B=\sqrt{3}+1$. Point $M$ is the midpoint of $A D$. Segment $C K$ is the angle bisector of $C$. Find the angle $C K B$.


4 There are two circles with centers $O_{1}, O_{2}$ lie inside of circle $\omega$ and are tangent to it. Chord $A B$ of $\omega$ is tangent to these two circles such that they lie on opposite sides of this chord. Prove that $\angle O_{1} A O_{2}+\angle O_{1} B O_{2}>90^{\circ}$.

5 There are some segments on the plane such that no two of them intersect each other (even at the ending points). We say segment $A B$ breaks segment $C D$ if the extension of $A B$ cuts $C D$ at some point between $C$ and $D$.

(a) Is it possible that each segment when extended from both ends, breaks exactly one other segment from each way?

(b) A segment is called surrounded if from both sides of it, there is exactly one segment that breaks it.
(e.g. segment $A B$ in the figure.) Is it possible to have all segments to be surrounded?


## Solutions:

1 As shown below, there is a $40 \times 30$ paper with a filled $10 \times 5$ rectangle inside of it. We want to cut out the filled rectangle from the paper using four straight cuts. Each straight cut is a straight line that divides the paper into two pieces, and we keep the piece containing the filled rectangle. The goal is to minimize the total length of the straight cuts. How to achieve this goal, and what is that minimized length? Show the correct cuts and write the final answer. There is no need to prove the answer.


Proposed by Morteza Saghafian
Solution. The answer is 65 . Here is an example of the solution:


2 Convex hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ lies in the interior of convex hexagon $B_{1} B_{2} B_{3} B_{4} B_{5} B_{6}$ such that $A_{1} A_{2}\left\|B_{1} B_{2}, A_{2} A_{3}\right\| B_{2} B_{3}, \ldots, A_{6} A_{1} \| B_{6} B_{1}$. Prove that the areas of simple hexagons $A_{1} B_{2} A_{3} B_{4} A_{5} B_{6}$ and $B_{1} A_{2} B_{3} A_{4} B_{5} A_{6}$ are equal. (A simple hexagon is a hexagon which does not intersect itself.)

## Proposed by Mahdi Etesamifard - Hirad Aalipanah

Solution. As you can see, we have divided the area between two polygons into 6 trapezoids. In each trapezoid is it easy to see that the triangles which have the same area (like $B_{1} A_{1} A_{2}$ and $B_{2} A_{1} A_{2}$ ) each belongs to one of the simple hexagons. Therefore, if we add up their areas and add the common area (the area of $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ ) to them, we can conclude that the areas of the two simple hexagons are equal.


3 In the given figure, $A B C D$ is a parallelogram. We know that $\angle D=60^{\circ}, A D=2$ and $A B=\sqrt{3}+1$. Point $M$ is the midpoint of $A D$. Segment $C K$ is the angle bisector of $C$. Find the angle $C K B$.


Proposed by Mahdi Etesamifard

Solution 1. Let $X$ be a point on $A B$ such that $A X=1$ and $X B=\sqrt{3}$. We know that $\angle M A X=$ $120^{\circ}$. Therefore by Pythagoras theorem we know that $M X=\sqrt{3}$. So we have $\angle M B X=15^{\circ}$ and $\angle C B K=45^{\circ}$. Hence, $\angle C K B=180^{\circ}-60^{\circ}-45^{\circ}=75^{\circ}$.


Solution 2. Let $N$ be the midpoint of side $B C . M N$ intersects $C K$ at $L$. It's clear that the triangle $C N L$ is equilateral. Therefore, we have $L N=C N=N B$. So, $B C L$ is a right-angled triangle. Because of Pythagoras's theorem we have $B L=\sqrt{3}$. On the other hand, we have $M L=\sqrt{3}$ and $\angle B L N=30^{\circ}$. Because of that, we have $\angle L B M=15^{\circ}$ and so we have $\angle C B K=30^{\circ}+15^{\circ}=45^{\circ}$. Hence, $\angle C K B=180^{\circ}-60^{\circ}-45^{\circ}=75^{\circ}$.


4 There are two circles with centers $O_{1}, O_{2}$ lie inside of circle $\omega$ and are tangent to it. Chord $A B$ of $\omega$ is tangent to these two circles such that they lie on opposite sides of this chord. Prove that $\angle O_{1} A O_{2}+\angle O_{1} B O_{2}>90^{\circ}$.

Proposed by Iman Maghsoudi
Solution. Let $A C, B C$ be tangents from $A, B$ to the circle with center $O_{1}$ and $A D, B D$ be tangents from $A, B$ to the circle with center $O_{2}$. It's enough to show that $\angle C A D+\angle C B D>180^{\circ}$. Or to show that $\angle A C B+\angle A D B<180^{\circ}$.
We know that $C, D$ lie on the outside of circle $\omega$. Therefore, we can always say that $\angle A C B<$ $\angle A X B$ and $\angle A D B<\angle A Y B$ because of the exterior angles. But we know that $\angle A X B+\angle A Y B=$ $180^{\circ}$. Hense, we can conclude that $\angle A C B+\angle A D B<180^{\circ}$ and the statement is proven.


5 There are some segments on the plane such that no two of them intersect each other (even at the ending points). We say segment $A B$ breaks segment $C D$ if the extension of $A B$ cuts $C D$ at some point between $C$ and $D$.

(a) Is it possible that each segment when extended from both ends, breaks exactly one other segment from each way?

(b) A segment is called surrounded if from both sides of it, there is exactly one segment that breaks it.
(e.g. segment $A B$ in the figure.) Is it possible to have all segments to be surrounded?


Proposed by Morteza Saghafian

## Solution.

(a) No. Consider the convex hull of the endpoints of these segments. Let $A$ be a vertex of the convex hull, where $A B$ is one of the segments.


We know that there exist segments $C D, E F$ as in the figure. So $A$ lies inside the convex hull of $C, D, E, F$ and therefore it cannot be a vertex of the main convex hull. Contradiction!
(b) Yes. The figure below shows that it is possible for all segments to be surrounded.


