The problems of $5^{\text {th }}$ IGO along with their solutions
Advanced Level

Problems:

1. Two circles ω_{1}, ω_{2} intersect each other at points A, B. Let $P Q$ be a common tangent line of these two circles with $P \in \omega_{1}$ and $Q \in \omega_{2}$. An arbitrary point X lies on ω_{1}. Line $A X$ intersects ω_{2} for the second time at Y. Point $Y^{\prime} \neq Y$ lies on ω_{2} such that $Q Y=Q Y^{\prime}$. Line $Y^{\prime} B$ intersects ω_{1} for the second time at X^{\prime}. Prove that $P X=P X^{\prime}$
2. In acute triangle $A B C, \angle A=45^{\circ}$. Points O, H are the circumcenter and the orthocenter of $A B C$, respectively. D is the foot of altitude from B. Point X is the midpoint of arc $A H$ of the circumcircle of triangle $A D H$ that contains D. Prove that $D X=D O$.
3. Find all possible values of integer $n>3$ such that there is a convex n-gon in which, each diagonal is the perpendicular bisector of at least one other diagonal.
4. Quadrilateral $A B C D$ is circumscribed around a circle. Diagonals $A C, B D$ are not perpendicular to each other. The angle bisectors of angles between these diagonals, intersect the segments $A B, B C, C D$ and $D A$ at points K, L, M and N. Given that $K L M N$ is cyclic, prove that so is $A B C D$.
5. $A B C D$ is a cyclic quadrilateral. A circle passing through A, B is tangent to segment $C D$ at point E. Another circle passing through C, D is tangent to $A B$ at point F. Point G is the intersection point of $A E, D F$, and point H is the intersection point of $B E, C F$. Prove that the incenters of triangles $A G F, B H F, C H E, D G E$ lie on a circle.

Solutions:

1. Two circles ω_{1}, ω_{2} intersect each other at points A, B. Let $P Q$ be a common tangent line of these two circles with $P \in \omega_{1}$ and $Q \in \omega_{2}$. An arbitrary point X lies on ω_{1}. Line $A X$ intersects ω_{2} for the second time at Y. Point $Y^{\prime} \neq Y$ lies on ω_{2} such that $Q Y=Q Y^{\prime}$. Line $Y^{\prime} B$ intersects ω_{1} for the second time at X^{\prime}. Prove that $P X=P X^{\prime}$

Proposed by Morteza Saghafian

Solution.

$Q Y=Q Y^{\prime}$ implies $\angle Q Y Y^{\prime}=\angle Q Y^{\prime} Y$. Considering circle ω_{2}, we have $\angle Q Y Y^{\prime}=\angle Y^{\prime} Q P$. This means $Y Y^{\prime} \| P Q$.
We also have $\angle Y^{\prime} Y A=\angle Y^{\prime} B A$ and $\angle A B X^{\prime}=\angle A X X^{\prime}$. This means $X X^{\prime}\left\|Y Y^{\prime}\right\| P Q$.
Therefore $\angle P X X^{\prime}=\angle X^{\prime} P Q=\angle P X^{\prime} X$, so $P X=P X^{\prime}$
2. In acute triangle $A B C, \angle A=45^{\circ}$. Points O, H are the circumcenter and the orthocenter of $A B C$, respectively. D is the foot of altitude from B. Point X is the midpoint of arc $A H$ of the circumcircle of triangle $A D H$ that contains D. Prove that $D X=D O$.

Proposed by Fatemeh Sajadi

Solution.

Since $\angle A X H=90^{\circ}$ and $X A=X H$, we conclude that $\angle A H X=45^{\circ}=\angle A D X$.
Also $\angle B O C=2 \angle A=90^{\circ}$, therefore points O, D lie on a circle with diameter $B C$. This implies

$$
\widehat{O D A}=\widehat{O B C}=45^{\circ} \Longrightarrow \widehat{O D X}=90^{\circ} .
$$

But note that

$$
\widehat{A C H}=90^{\circ}-\widehat{A}=45^{\circ}=\frac{1}{2} \widehat{A X H}
$$

This alongside with $X A=X H$ means X is the circumcenter of triangle $A C H$ and so $X A=X C$. Thus $O X$ is the perpendicular bisector of $A C$ and so $O X \perp A C$. Now in triangle $O D X$, the angle bisector of vertex D is the same as the altitude from D, hence it is an isosceles triangle with $D X=D O$.
3. Find all possible values of integer $n>3$ such that there is a convex n-gon in which, each diagonal is the perpendicular bisector of at least one other diagonal.

Proposed by Mahdi Etesamifard
Solution. Let m be the total number of the perpendicular bisectors of all diagonals in the given n-gon. The statement of the problem implies that m is not less than the number of diagonals. But it is clear that the total number of perpendicular bisectors of the diagonals does not exceed the number of diagonals! Hence, we conclude that each diagonal is the perpendicular bisector of exactly one other diagonal. Since the perpendicular bisector of a diagonal is a unique line, we get that for each diagonal d, there is exactly one diagonal d^{\prime} such that d^{\prime} is the perpendicular bisector of d.
Consider three adjacent vertices B, A, C of the n-gon, where A lies between B and $C . B C$ is a diagonal of the n-gon, and only diagonals that contain A have an intersection point with $B C$. Specially, the diagonal which is the perpendicular bisector of $B C$ passes through A. Hence $A B=A C$. Using this similar idea, it is deduced that all sides of this n-gon have the same length.

Similar to the previous part, consider four adjacent points of the n-gon, A, B, C, D with the given order. If $n>4$, then $A D$ is a diagonal of the n-gon, and the only diagonals that contain B or C, have an intersection point with $A D$. Therefore either B or C lie on the perpendicular bisector of $A D$. Without loss of generality, assume that $B A=B D$. According to the previous argument, $B A=B C=C D$. Thus triangle $B C D$ is an equilateral and so $\angle B C D=60^{\circ}$. (In the other case we would have $\angle A B C=60^{\circ}$.)

This implies that between any two adjacent vertices, there is one that has a 60 degree angle. Hence there is at least $\frac{n}{2}$ angles of 60° in this n-gon.
It is known that the total number of 60 degree angles in an n-gon with $n>3$ is at most 2 . So we must have $\frac{n}{2} \leq 2$ which means $n \leq 4$, a contradiction.
Clearly, any rhombus satisfies the desired property. So the answer is $n=4$.
4. Quadrilateral $A B C D$ is circumscribed around a circle. Diagonals $A C, B D$ are not perpendicular to each other. The angle bisectors of angles between these diagonals, intersect the segments $A B, B C, C D$ and $D A$ at points K, L, M and N. Given that $K L M N$ is cyclic, prove that so is $A B C D$.

Proposed by Nikolai Beluhov (Bulgaria)
Solution. Let P be the intersection point of $A C, B D$. First we claim that $K L$ and $M N$ are not parallel. Assume the contrary, that $K L \| M N$. Since $K L M N$ is cyclic, we have $K N=M L$, and $P K=P L, P M=P N$. We also have

$$
\frac{K P}{P M}=\frac{P L}{P N}
$$

Let $A P=x, B P=y, C P=z$ and $D P=t$. Also let $\angle A P B=2 \alpha$ and $\angle B P C=2 \theta$. We have

$$
K P=\frac{x y}{x+y} \cos \alpha, P M=\frac{z t}{z+t} \cos \alpha \Longrightarrow \frac{K P}{P M}=\frac{\frac{1}{z}+\frac{1}{t}}{\frac{1}{x}+\frac{1}{y}}
$$

Similarly,

$$
\frac{P L}{P N}=\frac{\frac{1}{x}+\frac{1}{t}}{\frac{1}{y}+\frac{1}{z}}
$$

Since $\frac{K P}{P M}=\frac{P L}{P N}$, with a little of calculation, we shall have

$$
\frac{1}{y z}+\frac{1}{z^{2}}+\frac{1}{z t}=\frac{1}{t x}+\frac{1}{x^{2}}+\frac{1}{x y} \Longrightarrow\left(\frac{1}{x}-\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)=0
$$

Which means $x=z$. But note that $P K=P L$ implies

$$
\frac{x y}{x+y} \cos \alpha=\frac{y z}{y+z} \cos \theta \text {. }
$$

But $\theta=90^{\circ}-\alpha$, so we must have $\alpha=\theta=45^{\circ}$, and so $A C \perp B D$, which is a contradiction. Therefore the claim is proved. With the similar idea, we can show that $K N$ and $L M$ are not parallel.

By Menelaus' theorem, $K L$ and $M N$ meet at a point Q on $A C$ such that $\frac{A Q}{Q C}=\frac{A P}{P C}$ and $L M$ and $N K$ meet at a point R on $B D$ such that $\frac{B R}{R D}=\frac{B P}{P D}$.
Let the incircle ω of $A B C D$ touch its sides at $K^{\prime}, L^{\prime}, M^{\prime}$, and N^{\prime}. By Brianchon's theorem, $A L^{\prime}, C K^{\prime}$, and $B D$ are concurrent. By Ceva's and Menelaus' theorems, K^{\prime}, L^{\prime}, and Q are collinear. Analogously, M^{\prime}, N^{\prime}, and Q are collinear and $L^{\prime} M^{\prime}$ and $N^{\prime} K^{\prime}$ meet at R.

By Brianchon's theorem, $K^{\prime} M^{\prime}$ and $L^{\prime} N^{\prime}$ meet at P. It follows the diagonals and opposite sides of both $K L M N$ and $K^{\prime} L^{\prime} M^{\prime} N^{\prime}$ intersect at the vertices of $\triangle P Q R$. Therefore, both the circumcircle of $K L M N$ and ω coincide with the polar circle of $\triangle P Q R$.
Since K is a common point of $A B$ and $\omega, K \equiv K^{\prime}$. Analogously, $L \equiv L^{\prime}, M \equiv M^{\prime}$, and $N \equiv N^{\prime}$. Hence the angle bisector $K M$ of $A C$ and $B D$ makes equal angles with $A B$ and $C D$ and $A B C D$ is cyclic, as needed.
5. $A B C D$ is a cyclic quadrilateral. A circle passing through A, B is tangent to segment $C D$ at point E. Another circle passing through C, D is tangent to $A B$ at point F. Point G is the intersection point of $A E, D F$, and point H is the intersection point of $B E, C F$. Prove that the incenters of triangles $A G F, B H F, C H E, D G E$ lie on a circle.

Proposed by Le Viet An (Vietnam)

Solution.

Let I, J, K, L be the incenters of the triangles $A G F, B H F, C H E, D G E$ respectively. Let ω be the circumcircle of $A B C D$. In case of $A B \| C D$, we would conclude that $A B C D$ is an isosceles trapezoid and it is easy to see that $I J K L$ is also an isosceles trapezoid.
So assume that $A B \nVdash C D$ and let M be the intersection point of rays $B A$ and $C D$. Since $A B C D$ is cyclic, it is obtained that

$$
M A \cdot M B=M D \cdot M C=\mathcal{P}_{M}(\omega)
$$

Since $M E$ is tangent to $\odot A B E$, we get

$$
\widehat{M E A}=\widehat{M B E} .
$$

We also have $M E^{2}=M A \cdot M B=\mathcal{P}_{M}(\odot A B E)$ and $M F^{2}=M D \cdot M C=\mathcal{P}_{M}(\odot C D F)$, which implies $M E=M F$, and so $\widehat{M E F}=\widehat{M F E}$. Therefore,

$$
\widehat{A E F}=\widehat{M E F}-\widehat{M E A}=\widehat{M F E}-\widehat{M B E}=\widehat{B E F} .
$$

The latest equation means that $E F$ is the interior angle bisector of $\angle A E B$. Similarly, $F E$ is the interior angle bisector of $\angle C F D$.

Note that H, J, K are collinear and $\angle F J H=90^{\circ}+\frac{\angle F B H}{2}$. Thus

$$
\begin{aligned}
\widehat{F J K} & =90^{\circ}+\frac{\widehat{M B E}}{2}=90^{\circ}+\frac{\widehat{M E A}}{2} \\
& =90^{\circ}+\frac{180^{\circ}-\widehat{A E C}}{2}=180^{\circ}-\frac{\widehat{A E C}}{2} \\
& =180^{\circ}-\frac{\widehat{A E B}+\widehat{B E C}}{2}=180^{\circ}-(\widehat{F E B}+\widehat{B E K}) \\
& =180^{\circ}-\widehat{F E K}
\end{aligned}
$$

This results in that EFJK is cyclic. With similar arguments, EFIL is also cyclic.
Since $E F$ is the interior angle bisector of $\angle G E H$ and $\angle G F H$, it is easy to see that triangles $G E F$ and $H E F$ are equal. Therefore $E G=E H$ and $F G=F H$, and so $\frac{G E}{G F}=\frac{H E}{H F}=k$. Consider three lines, the exterior angle bisector of vertex G in $\triangle G E F$, the exterior angle bisector of vertex H in $\triangle H E F$ and the line $E F$. According to the latest equation, there is two cases:

- These three lines are pairwise parallel. This means EFJK and EFIL are isosceles trapezoids. Hence the segments $E F, J K$ and $I L$ have the same perpendicular bisector and so $I J K L$ is an isosceles trapezoid.
- These three points are concurrent at a point P where $\frac{P E}{P F}=k$. Now we simply have

$$
P J \cdot P K=\mathcal{P}_{P}(\odot E F J K)=P E \cdot P F=\mathcal{P}_{P}(\odot E F I L)=P I \cdot P L .
$$

Which means $I J K L$ is cyclic.

