$5^{t h}$ Iranian Geometry Olympiad
 Advanced Level

Thursday, September 6, 2018
The contest problems are to be kept confidential until they are posted on the official IGO website: http://igo-official.ir .

1 Two circles ω_{1}, ω_{2} intersect each other at points A, B. Let $P Q$ be a common tangent line of these two circles with $P \in \omega_{1}$ and $Q \in \omega_{2}$. An arbitrary point X lies on ω_{1}. Line $A X$ intersects ω_{2} for the second time at Y. Point $Y^{\prime} \neq Y$ lies on ω_{2} such that $Q Y=Q Y^{\prime}$. Line $Y^{\prime} B$ intersects ω_{1} for the second time at X^{\prime}. Prove that $P X=P X^{\prime}$

2 In acute triangle $A B C, \angle A=45^{\circ}$. Points O, H are the circumcenter and the orthocenter of $A B C$, respectively. D is the foot of altitude from B. Point X is the midpoint of arc $A H$ of the circumcircle of triangle $A D H$ that contains D. Prove that $D X=D O$.

3 Find all possible values of integer $n>3$ such that there is a convex n-gon in which, each diameter is the perpendicular bisector of at least one other diameter.

4 Quadrilateral $A B C D$ is circumscribed around a circle. The angle bisectors of angles between diameters $A C, B D$ intersect the segments $A B, B C, C D, D A$ at points K, L, M and N. Given that $K L M N$ is cyclic, prove that so is $A B C D$.
$5 A B C D$ is a cyclic quadrilateral. A circle passing through A, B is tangent to segment $C D$ at point E. Another circle passing through C, D is tangent to $A B$ at point F. Point G is the intersection point of $A E, D F$, and point H is the intersection point of $B E, C F$. Prove that the incenters of triangles $A G F, B H F, C H E, D G E$ lie on a circle.

