$5^{\text {th }}$ Iranian Geometry Olympiad

Intermediate Level
Thursday, September 6, 2018
The contest problems are to be kept confidential until they are posted on the official IGO website: http://igo-official.ir .

1 There are three rectangles in the following figure. The lengths of some segments are shown. Find the length of the segment $X Y$.

2 In convex quadrilateral $A B C D$, the diameters $A C$ and $B D$ meet at the point P. We know that $\angle D A C=90^{\circ}$ and $2 \angle A D B=\angle A C B$. If we have $\angle D B C+2 \angle A D C=180^{\circ}$ prove that $2 A P=B P$.

3 Let ω_{1}, ω_{2} be two circles with centers O_{1} and O_{2}, respectively. These two circles intersect each other at points A and B. Line $O_{1} B$ intersects ω_{2} for the second time at point C, and line $O_{2} A$ intersects ω_{1} for the second time at point D. Let X be the second intersection of $A C, \omega_{1}$. Also Y is the second intersection point of $B D, \omega_{2}$. Prove that $C X=D Y$.

4 We have a polyhedron all faces of which are triangle. Let P be an arbitrary point on one of the edges of this polyhedron such that P is not the midpoint or endpoint of this edge. Assume that $P_{0}=P$. In each step, connect P_{i} to the centroid of one of the faces containing it. This line meets this face again at point P_{i+1}. Continue this process with P_{i+1} and the other face containing P_{i+1}. Prove that by continuing this process, we cannot pass through all the faces. (The centroid of a triangle is the point of intersection of its medians.)

5 Suppose that $A B C D$ is a parallelogram such that $\angle D A C=90^{\circ}$. Let H be the foot of perpendicular from A to $D C$, also let P be a point along the line $A C$ such that the line $P D$ is tangent to the circumcircle of the triangle $A B D$. Prove that $\angle P B A=\angle D B H$.

Time: 270 minutes.
Each problem is worth 8 points.

